
60

News

"Merkwürdigkeiten" -

Regex mit /g verhält sich "komisch"

In diesem Teil von "Merkwürdigkeiten in Perl" geht es um ein

Verhalten von Regulären Ausdrücken, über das man durch-

aus stolpern kann wenn man sich mit Regulären Ausdrücken

nicht so auskennt.

Reguläre Ausdrücke sind sehr mächtig und sie sind mit ein

Grund dafür, dass Perl in der "Textbearbeitung" so stark ist.

Und dank den Perl Compatible Regular Expressions (PCRE) ist

diese mächtige Syntax auch an vielen anderen Stellen ein-

setzbar (z.B. Apache, PHP und Postfix). Aber je mächtiger ein

Tool ist, umso mehr Verwirrung kann das Tool stiften wenn

der User sich nicht so sehr gut damit auskennt.

Die Dokumentation der Regulären Ausdrücke in Perl ist sehr

umfangreich und ist auf verschiedene Dokumente aufgeteilt,

die unterschiedlich tief in das Thema eintauchen. Diese Do-

kumente sind:

• perldoc perlre

• perldoc perlrequick

• perldoc perlretut

Und da sich in Perl 5.10 einiges bei den Regulären Ausdrü-

cken getan hat, sind dort noch perldoc perlreguts und

perldoc perlreapi hinzugekommen. Diese Dokumenta-

tion behandelt aber nur das Backend.

Doch jetzt zum Thema: Bei perl.de ist eine Frage zu Regu-

lären Ausdrücken und der Auswirkung des /g-Modifiers auf-

gekommen. Zu dem Beispiel

 $text = "foo foo";

 for ($i=1;$i<=10;$i++){
 print "$i " if $text =~ /foo/g;
 }

gibt es folgendes Ergebnis

 1 2 4 5 7 8 10

und der Fragensteller hat sich gewundert, warum das nicht 1

2 3 4 5 6 7 8 9 10 ergibt.

Das ist keine Stolperstelle, wenn man die Dokumentation

(perldoc perlretut) gelesen hat. Dort steht deutlich,

dass /g dafür sorgt, dass Perl sich die Position nach einem

Match merkt und dann genau an dieser Stelle weitermacht.

Die Positionsangabe wird nur bei einem erfolglosen Versuch

oder bei Änderungen am zu durchsuchenden String zurück-

gesetzt.

Was passiert also bei dem oben gezeigtem Code?

$i = 1 : Regex matcht erstes "foo", merkt sich Position 3

$i = 2: Regex matcht zweites "foo", merkt sich Position 7

$i = 3: Regex kann nichts mehr matchen, weil im String nichts

mehr steht -> Keine Ausgabe -> jetzt erst wird die Position

zurückgesetzt.

$i = 4: jetzt beginnt das ganze wieder von vorne.

Wie kann man das umgehen?

In dem man den Regulären Ausdruck einfach in Listenkon-

text verwendet, denn damit wird gleich der gesamte String

auf alle Vorkommen von "foo" untersucht und die Treffer

werden zurückgeliefert. Da nach dem letzten Treffer ein

erfolgloser Match kommt, wird die Position zurückgesetzt.

Dadurch beginnt die Regex-Engine beim nächsten Schleifen-

durchlauf wieder von vorne.

 $text = "foo foo";

 for ($i=1;$i<=10;$i++){
 print "$i " if(() = $text =~ /foo/ig);
 }

					 # Renée Bäcker

